Sains Malaysiana 52(11)(2023): 3103-3119

http://doi.org/10.17576/jsm-2023-5211-07

 

The Optimal Cryo Revival Period of Cryopreserved Wharton's Jelly Derived-Mesenchymal Stem Cells

(Tempoh Pemulihan Krio Optimum bagi Sel Stem Mesenkima Wharton Jeli yang Diawet Krio)

 

VIKNESWARY RAVI KUMAR1,2, MOHAMAD FIKERI ISHAK2, SHARIFAH IZWAN TUAN OTHMAN1, TRISTAN TAN3 & YOGESWARAN LOKANATHAN2,*

 

1University Selangor (UNISEL, Shah Alam City Campus, Selangor), Jalan Zirkon A7/A, Seksyen 7, 40000 Shah Alam, Selangor, Malaysia

2Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia

 3Da Vinci Healife Sdn. Bhd. 13-2, The Boulevard Offices, Mid Valley City, 59200 Kuala Lumpur, Malaysia

 

Diserahkan: 12 Mei 2023/Diterima: 20 Oktober 2023

 

Abstract

The workflow of cryopreservation is a challenging step in the standardised preparation of cell therapy products in terms of methods used (i.e., adapted controls of the work environment, quality control, reagents, and equipment). This study aimed to determine the effect of cryopreservation on the stability of mesenchymal stem cell (MSC) characteristics by comparing fresh cells with those that underwent different post-thaw cell recovery periods. The MSCs were derived from human Wharton’s jelly umbilical cord (n = 4). The cells that were cryopreserved for 7 days were revived at 0 h (CRC-0h), 24 h (CRC-24h) and 7 days (CRC-7d) and then evaluated on the basis of cell viability, doubling time, morphology, trilineage differentiation potential, growth kinetics, and MSC surface marker expression. The cell viability of the CRC-0h group was 90%, whereas that of the CRC-24h group was 80%-85%. Cell attachment results showed that CRC-24h had a notably higher attachment rate than the other two groups. The CRC groups showed CD90, CD73 or CD44 expression, which meets the minimum criteria for defining multipotent MSCs. By contrast, CD105 expression was significantly reduced in the CRC groups and was lower than the minimum requirement based on the standards of the International Society for Cellular Therapy. Results suggest that at least 24 h is necessary to improve the quality of MSCs for it to be adequate for cell therapy use.

 

Keywords: Cell therapy; cryopreservation; cryorevival; mesenchymal stromal cell; recovery period

 

Abstract

Aliran kerja pengawetan krio ialah satu langkah yang mencabar dalam penyediaan piawai produk terapi sel daripada segi kaedah yang digunakan (seperti kawalan disesuaikan persekitaran kerja, kawalan kualiti, reagen dan peralatan). Kajian ini bertujuan untuk menentukan kesan pengawetan krio ke atas kestabilan ciri sel stem mesenkima (MSC) dengan membandingkan sel segar dengan sel yang menjalani tempoh pemulihan sel pasca nyahbeku yang berbeza. MSC diperoleh daripada tali pusat jeli Wharton manusia (n = 4). Sel yang diawet krio selama 7 hari telah dihidupkan semula pada 0 jam (CRC-0j), 24 jam (CRC-24j) dan 7 hari (CRC-7h) dan kemudian dinilai berdasarkan daya maju sel, masa gandaan, morfologi, potensi pembezaan trilineage, kinetik pertumbuhan dan ekspresi penanda permukaan MSC. Daya maju sel kumpulan CRC-0j ialah 90%, manakala kumpulan CRC-24j ialah 80%–85%. Keputusan pelekatan sel menunjukkan bahawa CRC-24j mempunyai kadar pelekatan yang lebih tinggi daripada dua kumpulan lain. Kumpulan CRC menunjukkan ekspresi CD90, CD73 atau CD44 yang memenuhi kriteria minimum untuk menentukan MSC multipoten. Sebaliknya, ekspresi CD105 berkurang dengan ketara dalam kumpulan CRC dan lebih rendah daripada keperluan minimum berdasarkan piawaian International Society for Cellular Therapy. Keputusan menunjukkan bahawa sekurang-kurangnya 24 jam diperlukan untuk meningkatkan kualiti MSC supaya ia mencukupi untuk kegunaan terapi sel.

 

Kata kunci: Pemulihan krio; pengawetan krio; sel stromal mesenkima; tempoh pemulihan; terapi sel

 

RUJUKAN

Abazari, A., Hawkins, B.J., Clarke, D.M. & Mathew, A.J. 2017. Biopreservation best practices: A cornerstone in the supply chain of cell-based therapies - MSC model case study. Cell and Gene Therapy Insights 3(10): 853-871. doi: 10.18609/cgti.2017.082

Ali, H., Al-Yatama, M.K., Abu-Farha, M., Behbehani, K. & Al Madhoun, A. 2015. Multi-lineage differentiation of human umbilical cord Wharton's Jelly Mesenchymal Stromal cells mediates changes in the expression profile of stemness markers. PLoS ONE 10(4): e0122465. doi: 10.1371/journal.pone.0122465

Antebi, B., Asher, A.M., Rodriguez II, L.A., Moore, R.K., Mohammadipoor, A. & Cancio, L.C. 2019. Cryopreserved mesenchymal stem cells regain functional potency following a 24-h acclimation period. J. Transl. Med. 17: 297. doi: 10.1186/s12967-019-2038-5

Bahsoun, S., Coopman, K. & Akam, E.C. 2019. The impact of cryopreservation on bone marrow-derived mesenchymal stem cells: A systematic review. J. Transl. Med. 17: 397. doi: 10.1186/s12967-019-02136-7

Bharti, D., Shivakumar, S.B., Son, Y.B., Choi, Y.H., Ullah, I., Lee, H.J., Kim, E.J., Ock, S.A., Park, J.E., Park, J.K., Kang, D., Lee, S.L., Park, B.W. & Rho, G.J. 2019. Differentiation potential of different regions-derived same donor human Wharton's jelly mesenchymal stem cells into functional smooth muscle-like cells. Cell Tissue Res. 377(2): 229-243. doi: 10.1007/s00441-019-03009-7

Biehl, J. K., & Russell, B. 2009. Introduction to stem cell therapy. The Journal of Cardiovascular Nursing 24(2): 98-105. https://doi.org/10.1097/JCN.0b013e318197a6a5

Brohlin, M., Kelk, P., Wiberg, M. & Kingham, P.J. 2017. Effects of a defined xeno-free medium on the growth and neurotrophic and angiogenic properties of human adult stem cells. Cytotherapy 19(5): 629-639. doi: 10.1016/j.jcyt.2017.02.360

Chen, T., Yang, T., Zhang, W. & Shao, J. 2021. The therapeutic potential of mesenchymal stem cells in treating osteoporosis. Biol. Res. 54(1): 42. doi: 10.1186/s40659-021-00366-y

Chian, R-C. 2010. Cryobiology: An overview. In Fertility Cryopreservation, edited by Chian, R-C. & Quinn, P. New York: Cambridge University Press. pp. 1-9.

Cleary, M.A., Narcisi, R., Focke, K., van der Linden, R., Brama, P.A. & van Osch, G.J. 2016. Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potential. Osteoarthritis Cartilage 24(5): 868-872. doi: 10.1016/j.joca.2015.11.018

De Miguel, M.P., Fuentes-Julián, S., Blázquez-Martínez, A., Pascual, C.Y., Aller, M.A., Arias, J. & Arnalich-Montiel, F. 2012. Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Current Molecular Medicine 12(5): 574-591.

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.J. & Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315-317. doi: 10.1080/14653240600855905

Francois, M., Copland, I.B., Yuan, S., Romieu-Mourez, R., Waller, E.K. & Galipeau, J. 2012. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-gamma licensing.  Cytotherapy 14(2): 147-152. doi: 10.3109/14653249.2011.623691

Gurruchaga, H., Saenz del Burgo L., Hernandez, R.M., Orive, G., Selden, C., Fuller, B., Ciriza, J. & Pedraz, J.L. 2018. Advances in the slow freezing cryopreservation of microencapsulated cells. Journal of Controlled Release 281: 119-138.

Hieu Pham, L., Bich Vu, N. & Van Pham, P. 2019. The subpopulation of CD105 negative mesenchymal stem cells show strong immunomodulation capacity compared to CD105 positive mesenchymal stem cells. Biomedical Research and Therapy 6(4): 3131-3140. doi: 10.15419/bmrat.v6i4.538

Hieu, T.H., Dibas, M., Surya Dila, K.A., Sherif, N.A., Hashmi, M.U., Mahmoud, M., Trang, N.T.T., Abdullah, L., Nghia, T.L.B., Mai Nhu, Y., Hirayama, K. & Huy, N.T. 2019. Therapeutic efficacy and safety of chamomile for state anxiety, generalized anxiety disorder, insomnia, and sleep quality: A systematic review and meta-analysis of randomized trials and quasi-randomized trials. Phytother. Res. 33(6): 1604-1615. doi: 10.1002/ptr.6349

Ishak, M. F., Manira, M., Ng, M. H., Khairul, B., Gargy, L., Aminuddin, B.S. & Ruszymah, B.H.I. 2019. Long term effect of cryopreservation on primary human skin cells. Sains Malaysiana 48(1): 137-144. https://doi.org/10.17576/jsm-2019-4801-16

Kannaiyan, J., Muthukutty, P., Tabish Iqbal, M.D. & Paulraj, B. 2017. Villous chorion: A potential source for pluripotent-like stromal cells. J. Nat. Sci. Biol. Med. 8(2): 221-228. doi: 10.4103/0976-9668.210011

Kassem, D.H. & Kamal, M.M. 2020. Mesenchymal stem cells and their extracellular vesicles: A potential game changer for the COVID-19 crisis.  Front Cell Dev. Biol. 8: 587866. doi: 10.3389/fcell.2020.587866

Kern, S., Eichler, H., Stoeve, J., Kluter, H. & Bieback, K. 2006. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue.  Stem Cells 24(5): 1294-1301. doi: 10.1634/stemcells.2005-0342

Lechanteur, C., Briquet, A., Giet, O., Delloye, O., Baudoux, E. & Beguin, Y. 2016. Clinical-scale expansion of mesenchymal stromal cells: A large banking experience. J. Transl. Med. 14(1): 145. doi: 10.1186/s12967-016-0892-y

Levi, B., Wan, D.C., Glotzbach, J.P., Hyun, J., Januszyk, M., Montoro, D., Sorkin, M., James, A.W., Nelson, E.R., Li, S., Quarto, N., Lee, M., Gurtner, G.C. & Longaker, M.T. 2011. CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor beta1 (TGF-beta1) signaling.  J. Biol. Chem. 286(45): 39497-39509. doi: 10.1074/jbc.M111.256529

Lim, J., Eng, S.P., Yeoh, W.Y., Low, Y.W., bin Jusoh, N.M.S., Binti Rahmat, A.S., Shahrani, A., Bahrani Yahya, F., Abdul Rahman, R.A. & Mohamad Razi, Z.R. 2021. Immunomodulatory properties of Wharton's jelly-derived mesenchymal stem cells from three anatomical segments of umbilical cord. Sains Malaysiana 50(6): 1715-1726.

Marquez-Curtis, L.A., Janowska-Wieczorek, A., McGann, L.E. & Elliott, J.A. 2015. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects.  Cryobiology 71(2): 181-197. doi: 10.1016/j.cryobiol.2015.07.003

McElreavey, K.D., Irvine, A.I., Ennis, K.T. & McLean, W.H. 1991. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochemical Society Transactions 19(1). doi: 10.1042/bst019029s.

Murray, K.A. & Gibson, M.I. 2020. Post-thaw culture and measurement of total cell recovery is crucial in the evaluation of new macromolecular cryoprotectants.  Biomacromolecules 21(7): 2864-2873. doi: 10.1021/acs.biomac.0c00591

Naaldijk, Y., Johnson, A.A., Friedrich-Stockigt, A. & Stolzing, A. 2016. Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch-based cryoprotectants.  BMC Biotechnol. 16(1): 85. doi: 10.1186/s12896-016-0315-4

Omar, N., Lokanathan, Y., Mohd Razi, Z.R. & Bt Haji Idrus, R. 2019. The effects of Centella asiatica (L.) urban on neural differentiation of human mesenchymal stem cells in vitro.  BMC Complement. Altern. Med. 19(1): 167. doi: 10.1186/s12906-019-2581-x

Pollock, K., Samsonraj, R.M., Dudakovic, A., Thaler, R., Stumbras, A., McKenna, D.H., Dosa, P.I., van Wijnen, A.J. & Hubel, A. 2017. Improved post-thaw function and epigenetic changes in mesenchymal stromal cells cryopreserved using multicomponent osmolyte solutions. Stem Cells Dev. 26(11): 828-842. doi: 10.1089/scd.2016.0347

Qu, C., Brohlin, M., Kingham, P.J. & Kelk, P. 2020. Evaluation of growth, stemness, and angiogenic properties of dental pulp stem cells cultured in cGMP xeno-/serum-free medium. Cell Tissue Res. 380(1): 93-105. doi: 10.1007/s00441-019-03160-1

Saeedi, P., Halabian, R. & Imani Fooladi, A.A. 2019. A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Investig. 6: 34. doi: 10.21037/sci.2019.08.11

Selich, A., Zimmermann, K., Tenspolde, M., Dittrich-Breiholz, O., von Kaisenberg, C., Schambach, A. & Rothe, M. 2019. Umbilical cord as a long-term source of activatable mesenchymal stromal cells for immunomodulation. Stem Cell Res. Ther. 10(1): 285. doi: 10.1186/s13287-019-1376-9

Shivakumar, S.B., Bharti, D., Jang, S.J., Hwang, S.C., Park, J.K., Shin, J.K., Byun, J.H., Park, B.W. & Rho, G.J. 2015. Cryopreservation of human Wharton's jelly-derived mesenchymal stem cells following controlled rate freezing protocol using different cryoprotectants; A comparative study. Int. J. Stem Cells 8(2): 155-169. doi: 10.15283/ijsc.2015.8.2.155

Shivakumar, S.B., Bharti, D., Subbarao, R.B., Jang, S.J., Park, J.S., Ullah, I., Park, J.K., Byun, J.H., Park, B.W. & Rho, G.J. 2016. DMSO- and serum-free cryopreservation of Wharton's jelly tissue isolated from human umbilical cord. J. Cell Biochem. 117(10): 2397-2412. doi: 10.1002/jcb.25563

Squillaro, T., Peluso, G. & Galderisi, U. 2016. Clinical trials with mesenchymal stem cells: An update. Cell Transplant 25(5): 829-848. doi: 10.3727/096368915X689622

Tripathy, S. 2017. Cryopreservation of Mesenchymal stem cells (Mscs): Different approaches and applications. International Journal of Advanced Scientific and Technical Research 7(1): 435-456.

Whaley, D., Damyar, K., Witek, R.P., Mendoza, A., Alexander, M. & Lakey, J.R. 2021. Cryopreservation: An overview of principles and cell-specific considerations. Cell Transplant 30: 963689721999617. doi: 10.1177/0963689721999617

Yi, X., Chen, F., Liu, F., Peng, Q., Li, Y., Li, S., Du, J., Gao, Y. & Wang, Y. 2020. Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions. Stem Cell Res. Ther. 11(1): 183. doi: 10.1186/s13287-020-01690-y

Yong, K.W., Wan Safwani, W.K., Xu, F., Wan Abas, W.A., Choi, J.R. & Pingguan-Murphy, B. 2015. Cryopreservation of human mesenchymal stem cells for clinical applications: Current methods and challenges. Biopreserv. Biobank 13(4): 231-239. doi: 10.1089/bio.2014.0104

Zhao, G., Liu, F., Lan, S., Li, P., Wang, L., Kou, J., Qi, X., Fan, R., Hao, D., Wu, C., Bai, T., Li, Y. & Liu, J.Y. 2015. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing. Stem Cell Res. Ther. 6(1): 38. doi: 10.1186/s13287-015-0031-3

Zhou, T., Yuan, Z., Weng, J., Pei, D., Du, X., He, C. & Lai, P. 2021. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 14(1): 24. doi: 10.1186/s13045-021-01037-x

 

*Pengarang untuk surat-menyurat; email: lyoges@ppukm.ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya